AAA Proteins: Lords of the Ring
نویسندگان
چکیده
AAA ATPases (those associated with various cellular activities) 1 play important roles in numerous cellular activities including proteolysis, protein folding, membrane trafficking, cytoskeletal regulation, organelle biogenesis, DNA replication, and intracellular motility. Recent structural and enzymatic studies are providing clues into the properties of the conserved AAA domain that defines this large protein superfamily. In many cases, AAA domains assemble into hexamic rings that are likely to change their shape during the ATPase cycle. This nucleotide-dependent conformational switch may apply tension to bound proteins and thereby allow AAA proteins to unfold polypeptides, dissociate protein–protein interactions, or generate unidirectional motion along a track. Thus, AAA proteins may represent a broad class of mechanoenzymes that have evolved unique ways of using a fundamentally similar conformational change in many different biological settings.
منابع مشابه
Structural Elements Regulating AAA+ Protein Quality Control Machines
Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to...
متن کاملA structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein
Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusu...
متن کاملFundamental Characteristics of AAA+ Protein Family Structure and Function
Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modu...
متن کاملMutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase
The members of the hexameric AAA+ disaggregase of E. coli and S. cerevisiae, ClpB, and Hsp104, cooperate with the Hsp70 chaperone system in the solubilization of aggregated proteins. Aggregate solubilization relies on a substrate threading activity of ClpB/Hsp104 fueled by ATP hydrolysis in both ATPase rings (AAA-1, AAA-2). ClpB/Hsp104 ATPase activity is controlled by the M-domains, which assoc...
متن کاملNew MeSH Headings for 2018
AAA Proteins A large, highly conserved and functionally diverse superfamily of NTPases and nucleotide-binding proteins that are characterized by a conserved 200 to 250 amino acid nucleotide-binding and catalytic domain, the AAA+ module. They assemble into hexameric ring complexes that function in the energy-dependent remodeling of macromolecules. Members include ATPASES ASSOCIATED WITH DIVERSE ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000